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Abstract—Solar resource measurements play a critical role
in the assessment of long-term energy yield and the valuation
of PV systems. Recent valuation methods have focused on the
probability of exceedance statistic (PXX) for annual insolation
as part of computing project risk. For example, P90 is the
annual insolation value exceeded 90% of the time. However,
the small sample size of annual insolation values for a given
location increases uncertainty in the distribution. To assess the
distribution of annual insolation values, we aggregate ground-
and satellite-based data for the continental United States from
1961-2017, aggregate the data regionally and by climate zone,
and report variability statistics for each location. Overall, the
P99 annual insolation values were found to range from -4 to
-8% of the P50 value across the continental United States.

I. INTRODUCTION

Reducing uncertainty in interannual variability of solar
insolation is a key challenge for predicting the long-term
energy yield of PV systems [1]. Most satellite-based insolation
models report data from periods of less than 20 years [2] and
only a few ground-based sensor systems have been operating
for longer periods up to 40 years [3]. Even based on 8
years of data, detailed maps of the coefficient of variance
for annual insolation have been published for the continental
United States [2]. Other reports have generated “synthetic”
years comprised of 3-month periods from a 19 year dataset
to improve the sampling of interannual variability [4]. In this
study, we aggregate ground-based [3] and satellite-based [5]
data in a 200-km radius and from the years 1961-2017 to
increase the sample size of annual insolation data and reduce
the uncertainty in interannual variability.

II. DATA AND METHODS

Annual insolation data across the United States were com-
piled from several sources. First, data of NSRDB volume 1
were retrieved from the period 1961-1990 for 239 primary
and secondary WBAN stations [3]. Second, data from the
NSRDB 1991-2010 Update were included for 1020 USAF site
locations using the METSTAT model [5]. Third, data from
the SolarAnywhere 3.2 model from Clean Power Research
were included from 1998-2017 for 44 WBAN station locations
[6]. Hourly averaged global horizontal irradiance (GHI) data
were used to generate annual insolation values. Between the
three data sources, long-term median insolation values showed
correlation coefficients of >0.98.

To aggregate regional insolation data, all locations in a 200-
km radius were compiled and those within the same Köppen-
Geiger climate zone were included in the regional aggregate.

Each location’s annual insolation time series data was scaled
to the location’s median, which was determined by fitting a
normal distribution to the data. The scaled annual insolation
data was then aggregated to emphasize the distribution shape
rather than differences in the median values within the region.

III. RESULTS

Figure 1 shows the results of a statistical study of estimating
median and standard deviation values for a location based
on interannual data. Estimating the median value of annual
insolation requires a smaller sample size than estimating the
variability in annual insolation. A fixed number of points were
sampled from a normal distribution with location parameter

Fig. 1: Statistical study based on random sampling of the
normal distribution demonstrating that 10 points are sufficient
for estimating the median with 1%, but that >100 points are
needed to estimate the standard deviation to within 5%.



Fig. 2: (a) Köppen-Geiger climate map of the United
States with overlaid WBAN, USAF-METSTAT and CPR-
SolarAnywhere analysis locations.

1600 and scale factor 60, where the values were chosen based
typical solar resource variability data in the United States.
The sampling procedure was completed 500 times, resulting
in estimates of median resource with an interquartile range of
±1% for 7 points and estimates of standard deviation with an
interquartile range of ±10% for 40 points. Greater than 100
points of data were needed to reduce the interquartile range
of standard deviation values to ±5%.

Figure 2 shows the climate regions of the continental United
states along with the NSRDB’s WBAN and USAF locations.
Although the continuous climate regions cover broad areas in
the eastern United States, south Florida, the Rocky Mountains
and the west coast show more spatial nonuniformity. Station
coverage is denser in the eastern United States than in the
mountain west. CPR-SolarAnywhere analysis locations were
chosen to correspond with the list of WBAN and USAF sites.

Figure 3 shows the full data set aggregated by climate
zone. The dominant climate zones in the United States have
sample size >5000, but some of the more rare climate zones
only have a few hundred observations. Standard deviation
values were found to be 2.5-3.0% for the dominant Cfa, Dfa,
and Dfb climate types in the eastern United States. Lower
standard deviation values of 1.3-1.9% were found for the
desert southwest, and the Csb zone common in California
exhibited standard deviation of 3.3%.

Figure 4 shows the median and P99 annual insolation values
computed for the continental United States. Figure 4a echoes
familiar maps of typical solar resource, and Figure 4b shows
the P99 probability of exceedance statistic based on normal
distribution fits to regionally-aggregated data. Median annual
insolation values peak around 2100 kWh/m2/yr in the desert
southwest, and show a minimum in the Pacific northwest
around 1200 kWh/m2/yr. Overall the P99 probability of ex-
ceedance values were found to be -4 to -8% of the P50 value
across the continental United States.

IV. DISCUSSION

In comparison with previous reports, the data and methods
in this paper show more geographically uniform and somewhat
higher interannual variability. Gueymard et al [2] prepared
variability maps of the continental United States based on
7 years of satellite data processed using the SUNY model.
Figure 5 compares similar maps and color scales between the
two reports. We find somewhat higher variability of 2.0-2.5%
across the mountain west, and a fairly uniform variability of
3.0-3.5% across the eastern United States. Western Oregon is
found to have a large region of high variability up to 5% and
previous reports of high variability in south Texas and central
New York from previous reports were not reproduced.

Inspection of the data in Figure 3 occasionally suggests
some more complex structure than a symmetric normal distri-
bution. To explore this concept, we generated a range of skew-
normal distributions to assess how many data points would be
required to converge on the correct sigma and shape factor.
We found that >500 points would be required to distinguish
between normal and skew-normal distributions, a sample size
greater than we would have without increasing the regional
area to a radius of >400 km. Furthermore, if annual insolation
values can be modeled as the sum of many random weather
events, we would expect the central limit theorem to drive
annual insolation values towards a normal distribution. We
also explored aggregating the regional data without scaling
the data from each site. This approach yields larger variability
results because it conflates variability in median insolation
with variability in interannual insolation across a region.

Based on the simulations in Figure 1, an accurate estimate of
the P99 annual insolation value for a project location requires
at least 5 times more samples than the 20 years available
for most locations. Spatial aggregation of data increases the
sample size and allows distribution shape to be assessed, but
also raises several issues.

One concern is that the annual insolation data may have
significant spatio-temporal correlation between nearby sites
or nearby years. High spatio-temporal correlation reduces the
degrees of freedom in the annual insolation samples and over-
states the certainty in distribution statistics. Some authors have
reported that annual insolation appears to undergo decade-long
trends [7] [8], while others have asserted that annual insolation
is independent of previous years [9]. Temporal correlations
were evaluated by computing the correlation coefficient for
31 sites between the data and its 1-year lag. The 1-year
temporal correlation coefficients were found to be 0.05 ±
0.21, which is comparable to the results found after shuffling
the year index (-0.003 ± 0.23). Spatial correlations were
evaluated by computing the correlation coefficient for 566
combinations of nearby sites for the same year. The spatial
correlation coefficients were found to be 0.67 ± 0.25, which
are significantly stronger than the results found after shuffling
the year index (-0.006 ± 0.29). The partial correlation between
nearby sites suggests that the degrees of freedom may be
somewhat less than the sample size for computing confidence



Fig. 3: For each Köppen-Geiger climate zone, the available site-years were compiled into histograms. X-axis labels represent
relative percent deviation from the median. One sigma variability values range from 1.3 to 4.0% by climate zone.

Fig. 4: (a) Regional median annual insolation, aggregated by region and by Köppen-Geiger climate zone. (b) Regional P99
annual insolation data, generated using a normal distribution fit to the aggregated insolation data.

intervals on distribution statistics.

Another important consideration with spatial aggregation
is that nearby sites may not share the same distribution of
annual insolation. Many satellite-based and numerical weather
prediction models provide gridded estimates with 10x10 km
resolution, suggesting that the median annual insolation is
likely to change for nearby sites, but changes in median
insolation do not necessarily require changes in the interannual

distribution. The significant spatial correlation of 0.67 ± 0.25
between sites suggests that the distribution is likely to be
similar across a region. Selecting nearby sites for aggregation
only if they share the same Köppen-Geiger climate zone [10]
was performed to mitigate the risk of aggregating across
sites with significantly different distributions of interannual
insolation.

Variability in annual insolation is an important component



Fig. 5: Variability in interannual insolation from (a) Gueymard et al [2] and (b) values from this work. Color bins have been
matched between the two studies.

of variability in annual energy yield. Additional modeling
steps would be needed to convert the distribution of annual
insolation values into an expected range of PV energy yield
values. Hourly data on irradiance, temperature, wind speed
and other environmental variables are used as inputs to a
PV energy production model. Secondary loss factors such as
clipping, soiling loss, and snow losses also play an important
role in variability in PV energy yield.

V. CONCLUSION

Solar resource measurements play a critical role in the
assessment of long-term energy yield and the valuation of
PV systems. Based on a series of satellite- and ground-based
annual insolation data sources spanning from 1961-2017,
we compile data by region and by Köppen-Geiger climate
zone to model interannual variability in insolation. From the
aggregated data, the P99 annual insolation values were found
to range from -4 to -8% of the P50 value across the continental
United States.
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